If it's not what You are looking for type in the equation solver your own equation and let us solve it.
55=15x+4.9x^2
We move all terms to the left:
55-(15x+4.9x^2)=0
We get rid of parentheses
-4.9x^2-15x+55=0
a = -4.9; b = -15; c = +55;
Δ = b2-4ac
Δ = -152-4·(-4.9)·55
Δ = 1303
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{1303}}{2*-4.9}=\frac{15-\sqrt{1303}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{1303}}{2*-4.9}=\frac{15+\sqrt{1303}}{-9.8} $
| 15x-x+625=3 | | 5x^2-77x-30=0 | | 7x^2+63x,x=27 | | N=10/x | | 7x^2+63xx=27 | | 3x-5=75-15 | | 10x^2-20x+68=0 | | ∣7p+4∣=24 | | 2+(5x•4)=7 | | 2.5x+2=3x-2 | | 2(2+t4)=3/4(24-8t) | | 2(2+t4)=3/4(24-8t | | 9x+1-7x-20=-5 | | 4.5x+8=7x-2 | | 8x-9=0.5x-85 | | Y=-2.5x-2.3 | | 2^x=3^3 | | 2^x=74088 | | Y=-2.3x-2.3 | | 7^z=42^3 | | 3^y=42^3 | | -29=1+6x | | x.25+7=12 | | 2^x=42^3 | | -16+5n=-7(-6+8n)+2 | | .15x=5700 | | 5(4-3p)= | | 2^x=3^x=7^x=42^3 | | 3-3(x-5)=130 | | 24/7=k4 | | -5(x+3)=-3x+1 | | 6(x-1)=3x+1-3(-6x-1) |